4,827 research outputs found

    Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Get PDF
    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004ā€“2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet US EPA summertime volatility standards, (2) local industrial emissions and (3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv dāˆ’1, and did not fully account for the observed enhancements (20ā€“50 pptv) in 2004ā€“2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv dāˆ’1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv dāˆ’1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season

    Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign

    Get PDF
    Volatile organic compound (VOC) measurements were made during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) at Thompson Farm (TF), a continental site 25 km from the New Hampshire coast, and Appledore Island (AI), a marine site 10 km off the Maine coast. The 24 h mean total hydroxyl radical (OH) reactivity (Ā±1Ļƒ) for the suite of VOCs was 4.15 (Ā±2.64) sāˆ’1 at TF and 2.57 (Ā±1.10) sāˆ’1 at AI. The larger range of reactivity at TF was dominated by isoprene and the monoterpenes (mean combined reactivity = 2.01 (Ā±2.57) sāˆ’1). The impact of local anthropogenic hydrocarbon sources such as liquefied petroleum gas (LPG) leakage and fossil fuel evaporation was evident at both sites. During the campaign, a propane flux of 9 (Ā±2) Ɨ 109 molecules cmāˆ’2 sāˆ’1 was calculated from the linear regression of the mean 0100ā€“0400 local time mixing ratios at TF. This is consistent with fluxes observed in 2003 at sites spread throughout the coastal area of New Hampshire indicating that LPG tank leakage is a major hydrocarbon source throughout the region. Net monoterpene fluxes during ICARTT at TF were 6 (Ā±2), 1.8 (Ā±0.4), 1.2 (Ā±0.6), and 0.4 (Ā±0.5) Ɨ 109 molecules cmāˆ’2 sāˆ’1 for Ī±ā€pinene, Ī²ā€pinene, camphene, and limonene, respectively. Comparison to estimated NO3 and O3 loss rates indicate that gross monoterpene emission rates were approximately double the observed net fluxes at TF and comparable to current monoterpene nighttime emission inventory estimates for the northeast

    Amorphous and Crystalline H20 Ice at Rhea's Inktomi Crater

    Get PDF
    We present the analysis of Cassini spectral data from spectral mapping of Saturnian icy moons Dione and Rhea, to investigate possible effects of impact crater formation on the relative abundances of crystalline and amorphous water ice in the moons' ice crusts. Both moons display morphologically young ray craters as well as older craters. Possible changes in ice properties due to crater formation are conjectured to be more visible in younger craters, and as such Rhea's well imaged ray crater Inktomi is analysed, as are older craters for comparison. We used data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS). For each pixel in the VIMS maps, spectral data were extracted in the near-infrared range (1.75 micrometers less than lambda less than 2.45 micrometers). Analysis was begun by fitting a single Gaussian to the peak in absorption at 2.0 micrometers, which was then subtracted from the data, leaving residuals with a minimum on either side of the original 2.0-micrometers band. The spectra of the individual spatial pixels were then clustered by the differences between these minima, which are sensitive to changes in both ice grain size and crystallinity. This yielded preliminary maps which approximated the physical characteristics of the landscape and were used to identify candidates for further analysis. Spectra were then clustered by the properties of the 1.5-micrometers band, to divide the map into regions based on inferred grain size. For each region, the predicted differences in minima from the Gaussian residuals, over a range of crystallinities, were calculated based on the found grain sizes. This model was used to find the crystallinity of each pixel via grain size and characteristics of the residual function. Preliminary results show a greater degree of crystallization of young crater interiors, particularly in Rhea's ray crater Inktomi, where ice showed crystalline ice abundances between 33 percent and 61 percent. These patterns in ice crystallization are possibly attributable to increased heat generated during crater formation

    Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste

    Get PDF
    Plastic waste is ubiquitous in the environment and there are increasing reports of such waste being colonised by human pathogens. However, the ability of pathogens to persist on plastics for long periods, and the risk that they pose to human health, is unknown. Here, under simulated environmental conditions, we aimed to determine if pathogenic bacteria can retain their virulence following a prolonged period on plastic. Using antibiotic selection and luciferase expression for quantification, we show that clinically important strains of E. coli can survive on plastic for at least 28-days. Importantly, these pathogens also retained their virulence (determined by using a Galleria mellonella model as a surrogate for human infection) and in some cases, had enhanced virulence following their recovery from the plastisphere. This indicates that plastics in the environment can act as reservoirs for human pathogens and could facilitate their persistence for extended periods of time. Most importantly human pathogens in the plastisphere are capable of retaining their pathogenicity. Pathogens colonising environmental plastic waste therefore pose a heightened public health risk, particularly in areas where people are exposed to pollution

    A deep ATCA 20cm radio survey of the AKARI Deep Field South near the South Ecliptic Pole

    Get PDF
    The results of a deep 20 cm radio survey at 20 cm are reported of the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP), using the Australia Telescope Compact Array telescope, ATCA. The survey has 1 sigma detection limits ranging from 18.7--50 microJy per beam over an area of ~1.1 sq degrees, and ~2.5 sq degrees to lower sensitivity. The observations, data reduction and source count analysis are presented, along with a description of the overall scientific objectives, and a catalogue containing 530 radio sources detected with a resolution of 6.2" x 4.9". The derived differential source counts show a pronounced excess of sources fainter than ~1 mJy, consistent with an emerging population of star forming galaxies. Cross-correlating the radio with AKARI sources and archival data we find 95 cross matches, with most galaxies having optical R-magnitudes in the range 18-24 mag, and 52 components lying within 1" of a radio position in at least one further catalogue (either IR or optical). We have reported redshifts for a sub-sample of our catalogue finding that they vary between galaxies in the local universe to those having redshifts of up to 0.825. Associating the radio sources with the Spitzer catalogue at 24 microns, we find 173 matches within one Spitzer pixel, of which a small sample of the identifications are clearly radio loud compared to the bulk of the galaxies. The radio luminosity plot and a colour-colour analysis suggest that the majority of the radio sources are in fact luminous star forming galaxies, rather than radio-loud AGN. There are additionally five cross matches between ASTE or BLAST submillimetre galaxies and radio sources from this survey, two of which are also detected at 90 microns, and 41 cross-matches with submillimetre sources detected in the Herschel HerMES survey Public Data release.Comment: MNRAS accepted and in press 9 July 2012: 28 pages, 15 Figures, 17 Table

    From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum

    Get PDF
    Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release

    Processing Oscillatory Data with PDV

    Get PDF
    Author Institution: Lawrence Livermore National LaboratorySlides presented at the 2nd Annual Photonic Doppler Velocimetry (PDV) Workshop held at Lawrence Livermore National Laboratory, Livermore, California, August 16-17, 2007
    • ā€¦
    corecore